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Aerobic rice: water use sustainability
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ABSTRACT
Rice requires approximately 3000-5000 liters of water to grow one kilogram of rice traditionally. About 22
million hectares of irrigated dry season rice experience “economic water scarcity” in South and Southeast
Asia. Therefore, it was felt that there is a need to save water in rice cultivation, which led to development of
alternative methods of cultivation i.e., alternate wetting and drying(AWD), saturated soil culture (SSC) and
aerobic rice. Aerobic rice is the latest technology that reduces water inputs by growing rice as any other
irrigated upland crop. Selection of physiological traits of aerobic rice using molecular approaches may help
in enhancing water use efficiency sustaining the productivity.
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Almost 28% of the world’s rice is grown under rainfed
lowlands (Khush, 1997) and frequently affected by
uneven rainfall distribution. Another 13% of the rice
area is under upland cultivation, which is always
subjected to water stress during the growing season.
Besides, about 75% of the total rice production in Asia
is from irrigated lowland (Bouman et al., 2007). About
50% of the world rice production area is affected by
drought stress. When soil water content drops below
saturation, yield losses occur, as rice is susceptible to
drought (Bouman and Tuong, 2001; Pantuwan et al.,
2002).

It was estimated that 22 million hectares of
irrigated dry season rice in South and Southeast Asia
was experiencing “economic water scarcity” and 2
million hectares of Asia’s irrigated dry season rice and
13 million hectares of its wet season rice would suffer
from “physical water scarcity” by 2025 (Tuong and
Bouman, 2002). The availability of water for agriculture
is declining steadily due to urbanization and rapid
increase in population (Xue et al., 2008). Thus farmers
are now considering growing rice as an aerobic crop.
As moisture stress at any period during growth reduces
the crop yield, proper water management is the key for
successful cultivation of aerobic rice (Lafitte et al.,
2003). Maintaining production, while reducing water
use by rice, is a complex task (Lafitte et al., 2006).

Two types of irrigation methods i.e., alternate wetting
and drying (AWD) and saturated soil culture (SSC)
have been developed to reduce water inputs by
minimizing outflow.

In alternate wetting and drying (AWD)
method, water is applied to obtain a flood water depth
of 2-5 cm after passage of a certain number of days
(ranging from 2-7) from the day of disappearance of
standing water. In this technique, water input, water
productivity and rice yield depend mostly on
environmental conditions, especially the number of days
passed after the disappearance of standing water, soil
type and depth of ground water. Generally, by using
this technique, water input and rice yield decreases but
mostly, decrease in water input is higher than the yield,
thus water productivity increases (Bouman and Tuong,
2001).

In saturated soil culture (SSC), the soil is kept
as close to saturation as possible by shallow irrigation
to obtain about 1 cm floodwater depth a day or so after
the disappearance of standing water. This reduces
water inputs by 30-60% compared with the
conventional practice in the Philippines. The yield
reduced from 4-9% resulting in increase in water
productivity with respect to total water input of 30-115%
(Tabbal et al., 2002). In another experiment rice was
grown in raised beds in Australia by using saturated
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soil culture technique. In this system, rice is grown on
beds that are kept at saturation by keeping water in
furrows in between the beds. In bed planting the water
input is reduced by 42% compared with conventional
flooded rice grown in flat fields. Though yield was
declined by 17%, the water productivity with respect
to total water input was 33% higher than that in
conventional flooded system (Tuong, 2003).

There is a need to save water from rice
cultivation in future to overcome the problem of water
scarcity for which a special rice plant types that requires
less of water and a suitable production technology has
to be developed. This led to the development of an
alternative method of rice cultivation i.e., “Aerobic rice”.
Aerobic rice is called so because it is grown in a soil
environment where oxygen is present in plenty as
compared with flooded soil, where the condition is
anaerobic. Therefore, the twin benefit of water saving
and production increase can be achieved by developing
aerobic rice. It was also observed that the average yield
was 12% higher in heavy soil than in light soil and 40%
less water used under aerobic conditions, whereas in
flooded conditions yield was 23% higher in lighter soil,
than heavy soil and 35% more water was consumed
(Castaneda et al., 2003).

In the United States, studies on lowland rice
grown under aerobic conditions were in temperate
zones. Depending upon soil type, rainfall and water
management, 20-50% less irrigation water was
consumed in comparison to flooded conditions. But, 20-
30% less yield was observed by growing high yielding
cultivars (7-8 t/ha) under aerobic condition. Drought
tolerance cultivars produced same yield (5-6 t/ha) under
both the conditions. Similar results were also obtained
by researchers with sprinkler irrigation in Australia
(Blackwell et al., 1985). It was observed later that
flooded rice had 20% more panicles per m2, 15% more
spikelets per m2 and 13% higher grain filling than aerobic
rice. Also the harvest index of flooded rice was higher
than aerobic rice during dry season (Visperas et al.,
2002).

To reduce evaporation, the easy method is to
reduce land preparation period (Tuong, 1999). After
crop establishment, canopy closing earlier will reduce
evaporation. This can be achieved by using rice
varieties with good seedling vigour and maintaining
proper plant density. Thus, rice plants can compete

more efficiently with weeds and reduce non beneficial
transpiration resulting in increase in yield (Tuong et al.,
2000). Hydrostatic water pressure that forces water
movement through the soil causes higher amount of
outflow in flooded rice. This can be reduced by reducing
the duration of flooding in the fields or decreasing the
rate of outflow. To reduce the rate of outflow there is
need to reduce hydrostatic pressure or increase
resistance to water flow (Tuong et al., 1994). Puddling
increases the hydraulic resistance for vertical water
movement and thus reduces percolation. Puddling in
clay soil is very efficient to fill the gap formed by cracks.
This technique is not much effective in coarse soil due
to lack of fine particles to migrate downward. But it
does not reduce total water requirement for rice (Tabbal
et al., 2002).  Yield of 3–6 t ha1 was reported at soil
moisture tensions of 10–12 kPa or in ‘‘low-stress
environments’’ in aerobic cultivars (Bouman et al.,
2005; Atlin et al., 2006).

An alternate method to reduce water inputs is
to grow it like an irrigated upland crop such as wheat
or maize, i.e. on non-puddled, aerobic soil without
standing water. Some tropical rice varieties have a
relatively high yield under aerobic soil conditions. Some
new high yielding varieties which are responsive to
inputs in aerobic conditions must be developed through
the concept of growing rice like an irrigated upland
crop. Evidences of aerobic rice came from Brazil and
Northern China where it is now growing commercially
under about 140,000 ha. In Northern China, however,
breeding efforts have produced temperate aerobic rice
cultivars such as HD297, Han Dao 277, Han Dao 502,
Handao 65, Han 946, Han 58, Wushi Handao, Xiahan
51, Danjing 5 and Danjing 8, Danhandao 1 with reported
yield potential of up to 6 t/ha under supplementary
irrigation (Bouman and Tuong, 2001; Bouman et al.,
2005, 2006; Peng et al., 2006). Water use was observed
to be about 60% less than that of lowland rice and total
water productivity was 1.6-1.9 times higher (Wang et
al., 2002; Guang-hui et al., 2008).

In Brazil the impact of improved varieties and
associated technologies in the more favorable parts of
the savanna region pioneered a new concept of upland
rice known as ‘‘sequeiro’’ which means ‘‘dry
conditions’’. Later these varieties are classified in the
nomenclature of ‘‘aerobic rice’’ proposed by IRRI and
aerobic rice is recognized as an economically attractive
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crop. Now the main research challenge is to integrate
aerobic rice as a regular component of cropping
systems (Pinheiro et al., 2006). Yields of 4-6 t/ha were
obtained using extremely little water (450-650 mm, in
place of 1300-1500 mm in lowland rice), resulting in
much drier soil condition. It was also demonstrated that
besides water use efficiency, the nitrogen use efficiency
of aerobic rice was also higher than that of lowland
rice (George et al., 2001).

It was noticed that changing from saturated to
aerobic conditions, affected the soil form, availability
and uptake of zinc, phosphorus and nitrogen (Willett,
1982; Muirhead et al., 1989). Reduced Zn shoot
concentrations, partly below deficiency level, in aerobic
compared with flooded rice were observed in North
China at a site with a soil pH of 8 (Gao et al., 2006).
Continuous submergence of soil under flooded rice
promotes the production of methane, which is an
important greenhouse gas, whereas saturated soil culture
and alternate wetting and drying method or the aerobic
rice reduces the methane emission. Reports on
increased level of NO and N

2
O emissions in aerobic

rice system are seen and it was varying with soil type,
ground water depth, fertilizer application rate and soil
water content. In China it was observed that by the
application of fertilizer in fields the total N

2
O fluxes in

aerobic condition was 5-6 times higher than that in paddy
soil, while the total emission of CH

4
 in paddy soil was

18-19 times higher than that in aerobic condition (Li et
al., 2003). It was suggested that both methane and
nitrous oxide emissions are minimized by maintaining
the soil redox potential within a range of -100 to +200
mV (Hou et al., 2000). Occasionally, yield failures were
also noticed which may be related to soil health problems
(Nie et al., 2008; Kreye et al., 2009).

Further yield improvements in aerobic
conditions can be achieved by identifying secondary
traits contributing for tolerance against water stress and
selecting for those traits in a breeding programme. The
efficiency of selection for secondary traits for yield
improvement has been demonstrated in sorghum
(Sorghum bicolor {L.}Moench.) (Tuinstra et al., 1998)
and maize (Zea mays L.) (Chapman and Edmeades,
1999).

In the process of drought avoidance rice root
characteristics like thickness, depth of rooting, root
length density, root pulling force and root penetration

ability have been associated (Nguyen et al., 1997).
Osmotic adjustment, the active accumulation of solutes
during the development of water stress in plants helps
in maintaining leaf water potential. It delays leaf rolling,
tissue death and leaf senescence under water stress in
rice (Hsiao et al., 1984) and enhance grain yield in
other crops (Zhang et al., 1999). Quantitative Trait Loci
(QTLs) have been detected for several root related
traits and osmotic adjustment in rice (Ali et al., 2000;
Price et al., 2000; Zheng et al., 2000; Zhang et al.,
2001; Mu et al., 2003; Thanh et al., 2006;  Zheng et
al., 2006; Uga et al., 2008; Suryapriya et al., 2009).

By comparing the coincidence of QTLs for
specific traits and QTLs for plant production under
drought, it is possible to test whether a particular
constitutive or adaptive response to drought stress is
of significance in improving field level drought resistance
(Lebreton et al., 1995). A total of 47 QTLs have already
been identified for various plant water stresses and
comparing the coincidence of QTLs with specific traits
it was observed that root traits have positive correlation
with yield components under water stress. This can be
further used for marker-assisted selection for rice
improvement (Babu et al., 2003).
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